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ON THE ROLE OF THE SECOND LAW OF THERMODYNAMICS
IN MECHANICS OF MATRIALS

P. M. Naghdi
1

ABSTRACT This lecture summarizes the recent work of Green and Naghdi
[1,2] concerning the thermomechanics of dissipative materials,
the main features of which are: (a) The introduction of a con-
servation law for entropy which holds for all materials,
(b) the use of the energy equation as an identity for all
processes, thereby leading to restrictions on constitutive
equations, and (c) the development of an inequality representing
a mathematical interpretation of a statement of the second law
of thermodynamics.

1. Introduction

This is an expository account of a new approach to the thermo-
mechanics of dissipative materials proposed in two recent papers by
Green and Naghdi [1,2]. Although this approach already has been extended
to mixtures of interacting continua 13] and to nonlocal elasticity [4],
we confine attention here to classical single phase continua and quote
freely from the contents of [1,2].

In the context of single phase continuum mechanics, a number of dif-
ferent approaches are currently in use for treating the thermomechanical
behavior of dissipative materials and especially for imposing on constitu-
tive equations restrictions demanded by an appropriate form of the second
law of thermodynamics. A prominent approach to the subject utilizes the
Clausius-Duhem inequality (hereafter referred to as C-D inequality) in
the manner proposed by Coleman and Noll [5]. Although the latter proce-
dure has yielded acceptable results in important special cases, the C-D
inequality has been the subject of much criticism in recent years, for
example by Rivlin [6], by Day [7] and by Green and Naghdi [1,2]. In
general the criticisms stem from two main factors: (1) It is not at all
clear how the basic ideas contained in the statement of the second law of
thermodynamics have been translated into the C-D inequality and (2) the
inability of the C-D inequality to rule out unacceptable behavior in
some materials.

!! After recalling the conservation laws of the purely mechanical
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theory (section 2), thermal properties and conservation laws of the
thermomechanical theory are discusr-ed in section 3. These conservation
laws, in addition to the balance of' energy (the first law of thermo-
dynamics), include a balince of entropy in the form introduced in [1].
A procedure for the utilization of these conservation laws is outlined
(section 3) and involves the use of the energy equation as an identity for
all motions and all temperature distributions (after the elimination of
the external fields) and leads to restrictions on constitutive equations.
This is illustrated in the case of an elastic material which is taken to
be nondissipative in a sense that is later made precise. Expressions fbr
external mechanical work and heat calculated in section 4 are then
employed in section 5 to obtain a mathematical interpretation of a state-
ment of the second law representing the notion that in a dissipative
medium it is impossible to reverse completely a process in which mechani-
cal energy is transformed into heat. We conclude this review by mention-
ing in section 6 certain additional features of the approach to thermo-
mechanics proposed in [1,2].

2. Conservation laws in a mechanical theory.

Consider a finite body (B with material points X and identify the
material point X with its position .,in a fixed reference configuration.
A motion of the body is defined by a sufficiently smooth vector function
X which assigns position x=X(X,t) to each material point X at each
instant of time t. In the present configuration at time t, the body (B
occupies a region of space R bounded by a closed surface a. Similarly,
in the present configuration, an arbitrary subset g (c(B) of the body %B
occupies a part P (CR) of the region R, bounded by a closed surface 2p.

Let p= p(X,t) be the mass density in the present configuration and
designate the velocity vector at time t by v=x, where a superposed dot
denotes material time derivative. We assume the existence of an external
body force b=h(,t) per unit mass acting on the body (B in the present
configuration and an internal surface force t=t(X,t ;n), called the
stress vector, acting on the boundary2 6P with outward unit normal n.
The rate of work by these forces are, respectively, b. v per unit mass
and t. v per unit area.

We adopt the usual conservation equations for mass, momentum and
moment of momentum for every material part gc(B occupying a region P=R
and denote the elements of volume and area in the present configuration
by dv and da, respectively. Thus, we write

pvdv p b dv+S tda (2)
dt j P Pp

d Pxxv dv px xb dv + x xXL da (3)

with corresponding local forms

2Of course, when I"=R, t assumes the value of the external traction
on the surface 2.
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P +p divv= ,

div T+pb pv , t=Tn , (4)
T' T~=T .

T T

In (4), T is the Cauchy stress tensor, TT its transpose, and div stands
for the divergence operator with respect to the place x.

3. Thermal properties of the body. Conservation laws in a thermo-
mechanical theory.

We consider now the thermal properties of the body. The absolute
temperature at each material point is represented by a scalar field
G= e(X,t)>0. We also admit the existence of:

r =r(X,t)= external rate of supply of heat per unit mass;

-h= -h(X,t ; n) = internal heat flux across the surface bP and
measure'd per unit area of the surface 6P per unit time3 .

We define the quantities s=s(X,t) and k=k(X,t;n) by
s=-, r (5)

e e

and call these, respectively, the external rate of supply of entropy per
unit mass and the intern.l surface flux of entropy across BP per unit
area of ap per unit time . Also, throughout the body, we assume the
existence of the scalar fields:

f =T(X,t)= entropy per unit mass;

{= (X,t)= internal rate of production of entropy per unit mass;

e= e(X,t)= internal energy per unit mass.

For a body susceptible to both mechanical and thermal effects, the
conservation laws (W)-(3) are supplemented by the balance of entropy

d pdv J p(s+ )dv - kda (6)
dtP eP

introduced in [1] and the balance of energyd - p(y" " +c)dv p f(r+b 'v)dv+J (t 'v -h) d a , (7)

representing the first law of thermodynamics. Both (6) and (7) hold for
an arbitrary part %CB in the present configuration.

3When PL:R, the heat flux h assumes its value on the external
boundary surface 2.

4These terminologies associated for s and k arise naturally from
consideration of the special case of a gas or an inviscid fluid mentioned
later in this section, following Eq. (11).
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By usual procedures and under suitnble continuity assumptions, the
equations resulting frum (6) and ('7) are:

p = p(s+ )-div p , k p -. n
~ (8)

+ T D- p§ o- p. 0,

where z is the entropy flux vector, D= (L+LT) is the rate of deformation
tensor, L=grad v, Z= grad 8, grad denotes the gradient operator with
respect to x keeping t fixed and the term pge in (8) is the contribution
of to the internal rate of production of heat. Fr6m (5)2 and (8)2,
h =e .n and we may define the heat flux vector q by

Pe • (9)

Introducing the Helmholtz free energy = #(X,t) per unit mass by

4= 6- el , (10)

the energy equation (8)3 may be written in the alternative form

D+ -- p§ - p = 0 (11)

At this point, it is worth making some observations regarding the
conservation equations (8)1,a. First, we note that in the special case
of a gas or an inviscid flui and starting only with the energy equation
and appropriate constitutive equations, it can be demonstrated that two
scalar functions 8,11 exist such that an equation of the form (8)1 holds
with s and k given by ()1 2 and with peq =-p.Z. This result serves in
part as the motivation for'the balance equation (6) which is postulated
to hold for all materials. Second, we have excluded a discussion of jump
conditions at a surface of discontinuity. It should, however, be noted
that the internal rate of production of entropy may become unbounded on
a surface of discontinuity in such a way that the volume integral of in
(6) contributes to the jump condition (see Green and Naghdi [81). Third,
a more primitive form of balance of energy involves an internal rate of
production of energy. In order to deny the possibility that combined
thermal and mechanical energy can continually be extracted from the body
in closed cycles of deformation and temperature, the internal rate of
production of energy is expressed as the time derivative of an internal
energy density c. See, in this connection, Green and Naghdi [9, p. 42]
and [10, p. 356].

It is customary to regard the temperature 9 as an independent thermo-
dynamical variable. Thus, for a given body (having a reference mass
density p (X)), the field equations obtained from the integral forms of
the conservation laws involve a set of 9 functions. These consist of the
deformation function X and the temperature 8, i.e.,

Q(x 8) (12)

and the various mechanical and thermal fields, namely
5

5The mass density p is not included in (13) and (14) since, given

(12), p can be calculated from the equation for conservation of mass.
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(,,,TI,) (13)
and

(b,s] (14)

We assume that the fields (13) are specified by constitutive equations
which may depend on the variables (12), their space and time derivatives,
as well as the whole history of deformation and temperature. We then
adopt the following procedure in utilizing the conservation laws:

(i) The field equations are assumed to hold for an arbitrary choice
of the functions (12) including, if required, an arbitrary choice of the
space and time derivatives of these functions;

(ii) The fields (13) are calculated from their respective constitu-
tive equations;

(iii) The values of b and s can then be found from the balance of
linear momentum (4)2 and the balance of entropy (8)1;

(iv) The equation (4)h resulting from the balance of moment of
momentum and the equation (A)3 resulting from the balance of energy will
be regarded as identities for every choice of (12). These will then
place restrictions on the constitutive equations.

We note that the quantities ,J,* may be arbitrary to the extent of
additive functions f,f,-ef, respectively, where f is an arbitrary function
of the variables (12), their space and time derivatives and functionals
of their histories. The additive functions have the property that they
make no contribution to the differential equations for the variables (12)
and the boundary and initial conditions. They also make no cuntribution
to the energy identity (11) and no contibution to the internal energy e.
We reduce this arbitrariness by setting

Af M () 0

Then the function is determined uniquely and f is only arbitrary to the
extent of an additive function of X, independent of t. The function P in
(15)1 can thus be determined by specifying a value for I in some refer-
ence state. For example, in the case of an elastic medium, we may choose

in (15)1 to be a constant value so that 11 is a constant %o corresponding
to a constant reference temperature if the reference state is homogeneous.

Before closing this section, we apply the foregoing procedure to a
discussion of thermomechanical behavior of elastic materials. An elanstic
material is defined by specifying constitutive equations for the fields
(13) as functions of the variables

where F= x/X is the deformation gradient and the possible dependence on
X indicating inhomogeneity is understood. After imposing the usual
invariance requirements under superposed rigid body motions of the whole
body, the constitutive equation for the Helnholtz free energy reduces to

4g , (16)

6 For details, see [1, Sec. 2).



where C F nnd 00 = FCwith similair cozstAiutivc re:;ults for
tNext, w e introduce (1?)') :ionf, with crticspomiding constitutive equntions

into the energy equation (ii) ,ind iim'ind (by (iv) of section 3) that the
latter, as well as (1)4, be identically satisfied for every choice of the
variables7 (12). This leads to

(T- p 0 -) pQ) P , (17)

where C= 2F T DF. For given values of the variables which occur in the
argument of j in (16), we may choose D,8,o arbitrarily; and since the
coefficients of D,9 and in (17) are independent of these rate quanti-
ties, we conclude that bf/ao4=O and then deduce that

A A A A
* ~ ~ I (~), ~=~ T =pF( Li+- L)FT (18)

BC T

and

=-6 p. . (19)

Clearly (18) and (19), in addition to being necessary, are also sufficient
conditions for the satisfaction of (14)4 and (11) as identities for all
motions and all temperature distributions. With the use of (19), (5) and
(9), (8)1 reduces to

pr -div q = pefi (20)

for an elastic material. The results (18) and (20) are, of course, the
same as those found by Coleman and Noll [5] using the C-D inequality.
Here, however, no appeal has yet been made to a second law of thermo-
dynamics.

The results (18)-(20) include those for an inviscid fluid when the
dependence of the fields (1.3) on C is assumed to occur through det C or
equivalently through the mass density p.

4. External supplies of mechanical work and heat.

Preliminary to the discussion of the second law, we need to record
the expressions for the external mechanical work and the external heat
supplied to a material part IC:B during the time interval 9= [tlt 2] in
the present configuiration. First, however, we observe that in the case
of an elastic material the response functions for *,T],c depend only on
the deformation gradient F and the temperature 0 and are independent of
their rates and the temperature gradient a. Such an elastic matprial
will be regarded as nondissipitive in a sense that will be made precise
later; and, in conjunction with an expression for the external mechanical
work supplied to any part V, will be used as a basis for establishing
later an inequality reprs,:entirig the se,,,nd .,w of thermodynamics for
dissipative materials Keeping this background in mind, ae assume that
the constitutive responso. functions for c,1] include also dependence on
the list of variab.les F,O,, and their hircher ,-pace and time derivatives
and refer to this list collectively as Ii. Further, let c',I' denote
the respective values of e,j when the set lj is put equal to zero in the

7Recall (iii) of section 3.

6



response functions8 . Thus, for ex.uimple,

£= e(V,G,l , = e F',e) = £(v,@,O)(1
(21)(L,,e,g,...

where the dots in (21)3 refer to the higher space and time derivatives of
i,94. Then, with the help of (4) and the integral of (7) with respect to
time, we obtain

= External mechanical work supplied to a part g of the

body during the time interval = =[tl,t2]

JW(P) dt = aK(P) +AE(P) + + 1 (22)

and

= External heat supplied to a part g of the body

during the time interval 9= [t 1 ,t 2 ]

= Q()dt =-[i+W 21 , (23)
where the prefix denotes the "difference" operation on functions and
fields during the time interval 6, e.g., LK= '(t-)- K(t 1 ). Also, in
(22) and (23) the functions W,K,E ond q representing the rate of work by
body and surface forces, the kinetic energy, the internal energy and the
total external supply of heat, respectively, are defined by

W po. v dv-fS t. vda

(2) =4)
pNK() pr dv q nd

the quantities and are

W P91'av dt j pwidv dt(

and

pw = -- (pr - div q)

= p[w- ( - ')j

- p(-e ') T.iE , (26)

8 The.;e definitiuns of c',1' do not cxciudle their dependence on the
past histories of i',8,t; (se(; section 6 of [1]).



pw = - p( ' >, ' " D

= - (+ - + ) J + p .U , (27)

where i t'- i'. 1t is clear from (26)2 that in situations where
e does not depend on the list of variables (21)3, then c = e' and w* becomes
identical to w.

In the case of an elastic material, since the function A in (18)1 is
independent of the variables Ig in (21)3, it is clear that * = ', T =q1
(and hence e=e'). Moreover, in this case, by virtue of (19) and (27),'
we also have w 0. Thus, for an elastic material w* =0 and U,2 = 0 by ( 5)2 .
We make use of this latter result in the next section and regard the
elastic body, which has the value zero for U ) , as a reference (or "yard-
stick") from which the dissipation of mechanical energy into heat is
calculated.

5. The second law of thermodynamics. Restrictions on heat conduction
vector and internal energy.

In the first law it is assumed that mechanical energy can be changed
into heat energy and conversely, and no restriction is placed on the
transformation of one into the other. It appears to be a fact of experi-
ence that whereas the transformation of mechanical energy into heat, for
example through friction, is not limited by any restrictions, the reverse
transformation, namely that of heat into mechanical energy, is subject to
definite limitations. This fact has been incorporated into a number of
different statements, each of which is then usually called th- second law
of thermodynamics. It is often asserted that the various statements of
the second law are equivalent although proofs of this are far from con-
vincing and usually limited to special situations. For example, a form
of second law attributed to Kelvin (1851) is9 :

(A) It is impossible to construct an engine which would extract
heat from a given source and transform it into mechanical energy, without
bringing about some additional changes in the bodies taking part. A
slight variant of this statement which involves periodic cycles is due to
Planck and is knownas the Kelvin-Planck statement of the second law.

Another form of the second law is:
(B) It is impossible completely to reverse a process in which energy

is transformed into heat by friction.
There are other statements of similar character such as that due to

Carath4odory. A somewhat different idea seems to be involved in the form
of the second law attributed to Clausius (1850):

(C) Heat cannot pass spontaneously from a body of lower temperature
to a body of higher temperature.

A statement such as (C) does not necessarily involve the concept of
mechanical work since it could be applied to rigid heat conducting solids,
but many books contain "proofs" that (C) is equivalent to (A) or (B).

Although the first two of the above statements convey the ideas that
some restrictions must be placed on the interchangeability of energy due

9The various versions of the second law are recalled here as state-
ments (A), (B) and (C). These or variants thereof can be found in
standard books on thermodynamics, e.g., Schmidt L111, Zemansky [12] and
Pippard [131.
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* to heat and mechnici1l w,,rk, they r, not precise. Attempts to mnare this

notion precise in the context of sing-ic phase continuumt mechanics have led
to controversy, although the.re is a measure of a(reement about many of the
results which emerge from the restrictions. Must trouble seems; to center
on the concept of entropy, even though none of the above statements involve
entropy or appear to lead to its existence, except in special cases. In
recent years, some workers in continuum mechanics have postulated the
existence of a scalar field, called entropy, the production of which is
restricted by the Clausius-Duhem inequality, and this is regarded as
representing the second law of thermodynamics. With the help of this
inequality restrictions are placed on constitutive equations, and some of
these restrictions do seem to embody concepts contained in statements such
as (A), (B) or (C). However, the approach based on the C-D inequality has
certain shortcomings which have already been mentioned in section 1.

Before proceeding further, we recall that a state of the body (or its
part gc(B) at time t is described by the position vector x and the tem-
perature B throughout the body together with the constitutive response
functions for the fields (13). Once the response functions are given, we
can then calculate the values of E,K,W and u in (24) and (25). A thermo-
mechanical process, or simply a process, is a time sequence of states; it
is a continuous oriented curve in the space of states. Thus, a process
may be defined by a sequence of values of e,x throughout the body in the
time interval [O,o]. Similarly, the reverse process is defined by a
sequence of values of e,x throughout the body in the time interval [a,2a]
subject to the conditions

G(t) = 6(2a-t) , x(t) = x(2a-t) . (28)

The statements (A), (B) and (C) of the second law appear to involve

different concepts: one is concerned with transformation of heat into
mechanical energy being subject to definite limitations, while another
deals with heat not being able to pass spontaneously from a body at lower

-' temperature to one at higher temperature. In our discussion of the second
law, we separate the notion of recoverable work in dissipative materials
from that of conduction of heat. With reference to the former, we con-
sider now a mathematical statemtnt of the notion that in a dissipative
medium it is impossible to reverse completely a process in which mechani-
cal energy is transformed into heat. To this end, we observe that in any
process the work done by the external mechanical forces acting on " is
positive or negative dpendiing on whether thw ,e xternal worlz is supplied
to, or is withdrawn from "i. In gernera.l, some of' the work done results in
a change of the kinetic and internal energies represented by the first
two terms on the right-hand side of (22)2, each of which may be positive,
negative or zero. Al,,o, part of the work done m.y be positive with a
corresponding extraction from I as heat, or negative with a corresponding
absorption of heat by .

As already noted in section 4, for an elastic body U2 
= 0, and the

different contributions to U defined by (22) will vary in sign depending
on the process and will not be restricted to be either positive or nega-
tive for all processes. Conider asi!y p:'rvuoh process; in the time interval

S[0,a), starting from rest with v(O) 0 and ending at rest with v(a)=o.
Then, for its reverse process in the time irterval [a,2,], we also have
E(t)--F(2a-t), v(t) -v(2q-t) in view of (26). It follows that at the
end of the process and its reverse procesr Aq 0, A U, aF =0, av=2 and
hence for an elastic body, AeO, A O, , A, AO , A =o, AE=O,

It



AK=0, so that the body hNs returned to its original state. Then, all 10
the work done in the prces;s is rccoverctt as work in the reverse process
This recovery of work would not be possible if in every arbitrary process
part of W always hits a positive sign, since this part of In would then

yield positive work both in the process and the reversu process.
With this motivation for recoverable work in a process, we assume

that for any arbitrary process in P dissipative material only part of the
work done is recoverable as work, the rest being transformed into heat.
We therefore assume that in every process part of the work done is always
nonnegative. Then, if at the end of any process and its reverse process
the body has returned to the same state I , some of the work done is always
transformed into heat. Recalling that 2= 0 in (22) in the case of an
elastic material for all processes, we interpret the above assumption for
a dissipative material as

u>o (29)

for all material parts S and all thermomechanical processes. Since tl,t2
in the time interval J are arbitrary and since pw* has already been
assumed to be continuous, it follows that J'pw*dvO for all arbitrary ).

Hence, it follows from (29) that1 2

w o (30)

The procedure of section 3 and the thermodynamical inequality (30)
have been applied by Green and Naghdi to a viscous fluid and to materials
with fading memory [1, Sees. 5,6] and to elastic-plastic materials [14].
Also, Green and Naghdi (23 have studied the implications of the inequality
(30) in regard to the classical statements of the second law of thermo-
dynamics associated with cyclic thermomechanical processes. In particular,
in [2, Sec. 4] attention is called to the fact that for some materials,
such as a general viscoelastic material or an elastic-plastic material of
the type discussed in [141, the usual four statements for cyclic motions
associated with the second law are not applicable.

We now supplement the proposed inequality (30) with two further
inequalities which stem from the statement (C) above. As in [1], consider
first only the heat flux response in equilibrium cases for which heat flow
is steady. By equilibrium, we mean that

v = , F = 0 , =0 for all t

where F and 9, as well as all other relevant functions, are independent
of t (but may depend on x). For these equilibrium cases, we adopt the

10If work is extracted in the process, then it is absorbed by the
body in the reverse process.

11 In this case, a process and its reverse process together constit'te

a special type of cyclic process.

12 The inequality (29j) was first proposed in [2]. Previously, in [1,
Sec. 4], a different mathematical interpretation of the same statement of
one version of the second law was given in which E in (22) was replaced by

n'dv w* in (26) by w in (27). For a wide variety of mate-
rials in which c = e the two conditions coincide.

10



1*,

classical heat conductiun inequality

0 (31)
for all time-independent temperature fields. We recall that when q is
parallel to the temperature gradient Z, (31) implies that heat flows in
the direction of decreasing temperature.

For many materials of interest, the thermomechanical response of the
medium is characterized in terms of certain kinematic and thermal vari-

ables (such as F and 8) and their gradicnts but not their rates. In such
cases, once the heat flux response function has been restricted by (31),
the resulting conditions remain valid for all values of kinematic and

thermal variables and not just the time-independent ones.
To obtain the second inequality mentioned above, let the continuum be

in the state of rest with v = o for all time and with the deformation
gradient F everywhere constant for all time. Then, D=O everywhere and
it follows from (4) 1 that p is independent of t. In addition, we restrict
the temperature field to be spatially humogeneous so that 6 = 0(t). Keep-
ing these in mind, from a combination of (8)1 and (8)3 we have

pr- div q = pe (32)

Since v =o everywhere, no mechanical work is supplied to the body. Then,
using Z327 and (23), the external heat supplied to a part S of the body
during the time interval [tlt 2 ] is

= AL](P) (33)

We now suppose that the body has been in thermal equilibrium during some
period up to the time t 1 with constant internal energy cl and constant
temperature 81. We then assimue that whenever heat is continually supplied
to a part P according to (33), the temperature 9(t) throughout the part
will be increased, i.e.,

A8 > 0 whenever 33 > 0 (34)

Further, assuming suitable continuity, it follows from (33) and (34) that

Aa > 0 whenever Le > 0 (35)

for all t2 >t I.

6. Concluding remarks

The main differences between the recent approach to thermomechanics
of single phase continua proposed by Green and Naghdi [1,2] and that
based on the use of the C-D inequality are: (ri) The introduction of a
balance of entropy (6), along with the use of the energy equation as an
identity for all thernom echani cal processes; (b) a mathematical inter-
pretation of a statoment of the second l w ieiding to the inequality (30),
which represents the notion that in a dissipative medium it is impossible
to reverse completely a process in which mechanical energy is transformed
into heat; ond (c) a restri etion on chan ,e of temperature from equilibrium

upon the addition of heat j see (35)1 to iccompany the classical restric-
tion on the heat flux vector.
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Several criticisms of the use of the C-D inequality were cited in
SSection 1. Oe of these by Day [7] ari.,s from consideration of all
ii.. .il boundary-value problem for the determination of the temperature
field in a rigid heat conductor with memory. lie shows that the value of
entropy is not unique even though the internal energy and the heat con-
duction vector are uniquely determined. As already noted in [i], Day's
criticism does not apply to the developments presented here.

We now make some observations regarding the procedure proposed in
[1,2]. First, we recall that the field equations resulting from momentum
balance involve only the mechanical response functions while that obtained
from balance of energy involves both the thermal and the mechanical re-
sponses. In the traditional developments of theromechanics, after the
specification of constitutive equations, the former field equations yield
a system of differential equations for the determination of deformation
while the latter is regarded as a differential equation for the determina-
tion of temperature, after elimination of the external body force with the
use of the local equations of motionl3 . In contrast, the development of
Green and Naghdi [1,2] is such that the balance of entropy, which involves
only the thermal responses, provides the differential equation for the
temperature in parallel with the fact that the differential equations for
the deformation are derived from the balance of momentum. Consistent with
this, the energy equation (after the elimination of the external body
force and the external heat supply) is employed as an identity for all
thermomechanical process; and, hence, it does not yield any new dif-
ferential equation for temperature or deformation. It is noteworthy that
the energy equation as used here provides all the essential results -
other than those arising from inequalities-concerning the relationships
between the constitutive resporne functions or functionals prior to any
appeal to a second law of thermodynamics. In this sense, the inequality
(30) has been assigned a more subdued role relative to those of the con-
servation laws; arid, in the main, this has been the spirit of the contents
of [1,2] in regard to the type of restrictions which arise from an appropri-
ate form of the second law of thermodynamics.
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